Pada tahap identifikasi, variabel yang akan diramalkan terlebih dahulu diuji kestasioneran datanya. Kestasioneran data dapat diuji dengan cara plot data dan menghitung autocorrelation function (ACF). Melalui plot data, dilihat secara visual apakah data memiliki kecendrungan semakin meningkat, semakin menurun, atau terdapat fluktuasi musiman. Sedangkan dari nilai ACF, jika nilai ACF mendekati nol pada lag kedua atau ketiga, maka data tersebut stasioner. Jika data yang diamati memiliki pola musiman, pada plot ACF akan terlihat nilai ACF yang signifikan pada kelipatan musimnya. Deret data non-stasioner dapat dijadikan stasioner dengan melakukan proses differencing (pembedaan). Jumlah berapa kali dilakukan proses differencing menunjukan tingkat differensiasi model. Untuk pola data yang mengandung unsur musiman, secara khusus dapat digunakan model seasonal ARIMA.
Unsur musiman dapat dihilangkan dengan seasonal differencing . Setelah data menjadi stasioner, langkah yang selanjutnya dilakukan adalah menentukan model tentative. Untuk menentukan model tentative, diperlukan analisis dari ACF dan PACF. Pola ACF dan PACF bisa berpola cut off dan dies down. Pertama, ACF dan PACF dari data time series bisa berpola cut off. Pola cut off adalah pola ketika garis ACF dan PACF signifikan pada lag pertama atau kedua tetapi kemudian tidak ada garis ACF dan PACF yang signifikan pada lag berikutnya. Untuk pola cut off, perbedaan antara ACF dan PACF yang signifikan dengan ACF dan PACF yang tidak signifikan adalah besar sehingga garis ACF dan PACF terlihat terpotong (cut off). Kedua, ACF dan PACF dikatakan memiliki perilaku dies down jika kedua fungsi tersebut tidak terpotong, melainkan menurun secara bertahap. Bentuk penurunannya bisa tanpa ataupun dengan berbentuk gelombang sinus. Penentuan apakah suatu data time series dimodelkan dengan AR, MA atau ARIMA tergantung pola ACF dan PACF. Model AR digunakan jika plot ACFnya dies down sementara PACF-nya cut off. Model MA digunakan jika plot ACFnyacut off dan plot ACF-nya dies down. Sedangkan jika kedua plot ACF dan PACF sama-sama dies down, maka model yang digunakan adalah model ARIMA.
Kesalahan yang sering terjadi dalam penentuan p dan q bukan merupakan masalah besar pada tahap ini, karena hal ini akan diketahui pada tahap pemeriksaan diagnosa selanjutnya.
Tidak ada komentar:
Posting Komentar