Jika model terbaik telah ditetapkan, maka model siap digunakan untuk peramalan. Untuk data yang mengalami differencing, bentuk selisih harus dikembalikan pada bentuk awal dengan melakukan proses integral karena yang diperlukan adalah ramalan time series asli.
Notasi yang digunakan dalam ARIMA adalah notasi yang mudah dan umum. Misalkan model ARIMA (0,1,1)(0,1,1)9 dijabarkan menjadi sebuah persamaan regresi yang lebih umum:
Untuk meramalkan satu periode ke depan, yaitu Zt+1 maka model disusun seperti pada persamaan berikut:
Nilai et+1 tidak akan diketahui, karena nilai yang diharapkan untuk kesalahan
random pada masa yang akan datang harus ditetapkan sama dengan nol. Akan tetapi dari model yang disesuaikan (fitted model) kita boleh mengganti nilai et et-8 dan et-9
dengan nilai nilai mereka yang ditetapkan secara empiris (seperti yang diperoleh setelah iterasi terakhir algoritma Marquardt).
Tentu saja bila kita meramalkan jauh ke depan, tidak akan kita peroleh nilai empiris untuk “e” sesudah beberapa waktu, dan oleh sebab itu nilai harapan mereka akan seluruhnya nol. Untuk nilai Z pada awal proses peramalan, kita akan mengetahui nilai Zt, Zt-8, Zt-9. Akan tetapi sesudah beberapa saat, nilai akan berupa nilai ramalan (forecasted value), bukan nilai-nilai masa lalu yang telah diketahui.
Teknik peramalan dengan menggunakan ARIMA juga memberikan confidence interval. Jika peramalan dilakukan jauh ke depan, maka confidence interval umumnya juga akan makin melebar. Namun tidak demikian untuk confidence interval moving average model murni. Peramalan merupakan never ending process yang berarti jika data terbaru muncul, model perlu diduga dan diperiksa kembali.
Tidak ada komentar:
Posting Komentar